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ABSTRACT

Experimental data from Davidson Laboratory on induced mass and drag

of the basic finner missile have been reevaluated at the Naval Weapons

Laboratory. All but four of the runs must be discarded as determina-
tions of induced mass because of uncertainty in velocity. 'It is con-

cluded that an insight into tue mechanism of induced mass can only be

achieved through mathematical analysis.

FOREWORD

This report has been prepared in compliance with BUWEPS Directive

RRRE,07 004/210-1/R002-02-OO dated 10 October 1960. -Date of com-

pletion was 6 April 1961.

INTRODJCTION

An extensive effort has been made in various laboratories.to deter-

mine the hydrodynamic charactu ,i.tics of missiles. Quantitative data

on forces and moments are available for steady flight. The interpre-

tation and utilization of data for unsteady flight require a know-

ledge of the induced mass and moments of inertia of "the entrained

fluid. Theoretical studies ef this induced mass have been limited to

ideal fluids. No reliable information is available yet about how the

induced mass varies with Reynolds number or acceleration modulus..

The California Institute of Technology has investigated the motion

of the basic finner missile in vertical and horizontal flight.

Quantitative interpretation of the horizontal runs probably will be

possible after we know the dependence of induced mass on Rernolds

number, Quantitative correlation of the vertical runs has not been

possible without an assumption that the actual masses were incor-

rectly recorded. No reruns have been possible because the apparatus

has been dismantled.

The Naval Weapons Laboratory proposed in reference 1 that progranized

acceleration trials be run in a towing tank. The Davidson Laboratory

has made such trials and has established new values for the steady

state drag of the basic finner missile. The drag curve has a



mysterious hump, but no documentation of flow regimes is available.

to explain the cause of the hump. The instrumentation was barely

adequate to measure the induced mass (k 1 ri 0.15). The following

sources of error are considered noceworthy.

a. The interior of the model was flooded with fluid. Although

a portion of the interior was plugged, the pressure gradients during

acceleration were those of a hollow shell filled with fluid. The

equivalent mass of the fluid content was a substantial part of the

internal mass, and this caused a loss of sensitivity.

b. The interior of the model was exposed to the fluid pressure
at the rim of the flat base. The steady drag was correctly deter-
mined insofar as the base pressure is uniform. The effect of

induced mass was probably in error because the pressure distribution

from induced mass is not uniform over the base.

c. The velocity of the model could not be controlled to 'follow

closely an ideal stepwise variation. The velocity record3 were

recorded at too small a scale to be read with precision.

Although these errors largely obscure the induced mass, a reanalysis
ha3 been made at the Naval Weapons Laboratory in an attempt to

retrieve some useful information.

-° TRAJECTORY INTEGRATIONS

The test conditions of the runs were forwarded by Davidson Laboratory

in reference "2 and the original records were forwarded in refer-

ence "3. A catalog of the test conditions is given herewith in

Table I and samples of the records are reproduced in Figures 1 and 2.

With the exception" of the first four runs in Table I the velocities

were recorded at much too small a scale. The smallest scale divi-

sion on the speed records has been converted to speed increments

through the use of a calibration chart which was supplied with

reference -3. The speed .ncrement per scale division Is listed in
C
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Table I. Even with the assumption that the speed records can be

estimated correctly to one fifth of a scale division the uncertainty

in speed is enough to mask the induced mass*. Thus there would be a

I0O error in nducad mass if there were an error of 0.36 (ft)-/(sec)

over a velocity range of 5 (ft)/(sec).

The uncertainty in the records from wiggles is clearly apparent from

an inspection of Figures 1 and 2.

The original records from the Davidson Laboratory have been

reanalyzed at the Naval Weapons Laboratory on the basis of a

momentum-displacement correlation instead of a force-velocity corre-

lation. The objective of the change in correlation was a reduction

in the uncertainty from wiggles in the oscillographic records. The

drag records were reevaluated to obtain a set of average drag forces

whose summation would reproduce the area under the drag traces.

The results of this reevaluation are documented in Appendix C.

Simplified trajectory integrations were performed on 7JORC with a

uniform time interval of 0.5 (sec). The trajectory integrations

utilized a mass coefficient m and a drag coefficient k. The mass

coefficient m (slugs) for the test models is -related to the added

mass coefficient k. by the equation**

M, = (1.01) + (0.50) kl (1)

and the drag coefficient k (slugs)/(ft) is related to the drag

coefficient CD by the equation**

k = (0.0888) CD (,2)

where CD applies to the base area alone.

*In reference 1 the specification of accuracy was 0.5% of full

scale.

**These equations are derived from a base area of 0.0916 (ft)
2, a

total volume of 0.,2599 (ft)
8 , and a total weight of-32.48 (lb),

as quoted in reference 4,.
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The accunmlated error in impulse En (lb) (see) after n steps of

integration is given by the equation

, = Z - (3
i T = z i-Mi i -4

where Ti (lb) is the average force in the ith interval and vi (ft)-/(sec)

is the velocity at the end of the ith interval. The coefficients

were interpolated from a table of values at half intervals in velo-

city. A table of values is given in Appendix C. Thus the values

xi were computed from the equation

Mi = W. + (2 vi-J (my, - j) (4)

and the values ki were computed from the equation

ki =. k - + (2 vi - j) (kj+,. - kj) (5)

where j is the serial number in the table for that entry vi which

is next smaller than vi. The results of computation were plotted on

the CRT printer. A set of results is given in Appendix D where s.

is plotted against v., and each point is labeled with the value of

n. An error in mj is reflected in the plots by a nonzero slope

during increment of velocity and an error in kj is reflected by a

if nonzero drift rate during stationary velocity. The entries in the

table of coefficients are so adjusted by trial as to minimize the

random deviation of the plots from the velocity axis.

Various adjustments of mass and drag were tested. The induced mass

could be varied by '25%.from the value which is reported in refer-

ence 4 without appreciable improvement in the error curves. The

drag from the constant speed runs was not the optimum and an improve-

ment in the error curves could be achieved through an adjustment of

drag. Values of kj from the constant speed runs are listed in the

second column of Table II and the values of kj after adjustmont are

listed in the third column of the table*. The adjusted values are

basic to the error curves in Appendix D.

*Although constant values are listed in the table for low velocity

and for high velocity these were never used in the actual integra-

tions.
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Even if all runs are rejected except the first four because of error

in velocity, there is still a discrepancy in induced mass between

runs 2 and 20.

FLOW ANALYSIS

Experimental determinations of induced mass heretofore have not been
quantitative. It seems obviou- that mathematical analysis is neres-,

sary for an insight into the characteristics of induced mass,

If a missile were accelerated suddenly from one constant velocity to
another then a potential flow would be superimposed upon the preexisting
flow. Since the potential flow would not satisfy the. boundary condi-
tion of constant velocity at the surface of the missile, the potential

flow would be modified gradually through a diffusion of vorticity.

Meanwhile the drag would decay from a large initial value t, a steady

final value. The acceleration thus would initiate a greater total

impulse than that required to create the potential-flow.

If a rapid acceleration cycle were applied to the missile the diffu-
sion of vorticity would not have time to develop and the induced

mass would be just that of the classical potential-flow. A com-

puting program for potential flow over missiles has been developed

by the Douglas Aircraft Company. Details are given in reference 5

and subsequent reports. The computing program can be applied to the

basic 'finner missile.

If a slow acceleration cycle were applied to the missile the diffu-
sion of vorticity would have time to develop and the total impulse

would be the integrated result of differential increments of-flow

configuration.

A theoretical study of induced mass is underway at the Naval Weapons
Laboratory. An initial model consisted of a pair of line vortices

behind a'cylinder. The effect of the vortices was found to be a

decrease of induced mass. An acceleration moves the vortices closer

to the cylinder, and diminishes the pocket of entrained fluid.

5
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Although circulatory motion can be observed in the trailing wakes

of cylinders, the concept that vorticity is concentrated in the

pocket is illusory. Valid solutions of the Navier-Stokes equation

show that the vorticity trails off from the cylinder in a vortex

sheet from each separation point. There is relatively little vor-

ticity in the pocket of entrained fluid, while there is even less
potential gradient.

A new computing program for solving the Navier-Stokes equation is

now in- preparation. The new program will give time dependent solu-

tions for flow past a cylinder. Line vortices are placed at the

intersections in a grid. The rate of change of vortex strength at

each grid point is determined by finite difference approximations of

the diffusion and convection of vorticity. Stream function is deter-

mined by the summation of contributions from each line vortex.

Storage requirements in the calculator are minimized by the use of a

polar grid. This program will provide the first determination of a

variation of induced mass with Reynolds number.

More information about flow regimes is needed. Possibly small

models of the basic finner missile could be moved through a bentonite

suspension in a tank with polaroid windows. Photographs of the-

double refraction would show the onset of turbulence at various

points on the pissile.

RECOMMENDATIONS

1I It is recommended that further tests on induced mass be spon.-

sored at Davidson Laboratory, but only if all of the following

specifications are met:

a. The power drive and recording system be modified to give a

better control and a more precise determination of the velocity.

b. The model be mounted on side struts instead of the basi

! stxg (as recommended by Davidson Laboratory).

c. The interior of the model be sealed off from fluid contact

(with dynamometer in struts).

6



2-. it is recc=ended that a project be established at a hydraulic

2 ratory for the photography of flow regimes.

3. It is recseznded that a project be established at Douglas

Aireraft .Crany for the computation of potential flow over the

basic finner missile.

4. It is recc=ended that the progranming and calculation of the

vortex strength behind a cylinder be continued at the Naval Weapons

Lbor-tory to the point of determining, the induced mass of the

entrained fluid.

CEP "r Aj3S1"

it is concluded that an insight into the mechanism of induced mass

will not be gained without a mathematical analysis of flow regimes.

1. Proposal for the Experimental Investigation of Induced Hass and

Drag of the Basic Finner Missilz, A. V. Hershey, W. E. Moyer,

- D. P. Fields, IBPG Tech Memo No'. K-11/58 (dated July 1958)

'2. Ltr from . E. prowse, (Davidson Laboratory) to F. D. Donoghue

(Bureau of Ordnance) dated-3 Oct 1959

-3. Ltr from P. 'f. Brown (Davidson- Laboratory) to A. V. Hershey

(Naval Weapons Laboratory) dated 21 Sept 1960

4. Added-Kass and Drag Coefficients of Basic Finner Missile, 1..

Savitsky and R. E. Prowse, Davidson Laboratory Report No. R-824•

(dated December 1960)

5. Exact Solution of the keumann Problem. Calculation of Non-

Circulatory Plane and Atially Symmetric Flows about or within.

Arbitrary Boundaries, A. M. 0. Smith and 3. Pierce, Douglas

Aircraft Company Report No. ES 26988 (dated 25 April 1958)
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TABLE I

CATALOG OF RECORDS FROM ORIGLNAL DATA

Sting Speed Scaie
Run Di ameter Range Division Run

Number (in) (ft)-/ (see) (ft)/(sec)" 'Knumb e r

'2 1.75 0 - 11.28 0.1 2 1

6 1.75 0 - 10.45 0.12 -2
9 1.75 0 - 17.22 0.12 "3-

20 1.75 6.12 - 1. 14 0.1-2 5

21 1.75 11.76 - 16. 50- 1. 8 6

22 1.75 9.85 - 5.86 1.8 7

25 1.75 14 06 - 8.40 1.8 9

27 1.75 18.18 - 14-00 1.8 10-
'28 1.75 9.70- 6.50 . 1.8 8

-33 -2.50 0- - 11.96 1.8 11
-33 2.50 11.96 - 5.V2 1.8 13

-39 2.50 13.63 - 17.50 1. 8 1'2

47 2.50 17.69 - 14-00- 1.8 14-

54' 1.75 0 - 16.'22 1.8 "4"

*Runs as renumbered in the final report, reference 4.
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TABLE I

DRAG COEFFICIEMT FRM CONSWW SPXKD RUNS PA.D
AFT=1 ADJUSUh!Oi FOR OPTIMMIR CURES

ki ki

j Vi Constant Seed Optimurm Error

0 0 0.0372 0.0372
"2 1 0.0372 0.0372
4 2 0.0372 0.0372
6 -3 0.0372 0.0372
8 4! 0.0363 0.0363

10 5 0.0354 0.0354

1J2 6 0.0346 0.0346
14 7 0.0341 0.034-1
16 8 0.0381 0.0381
18 9 0.0392 0.0392
'20 10 0. 0375 0.0354
•22 11 0.0354 0.0353
24 1-2. 0.0352 0.0352

26 13 0. 0347 0.0347
28 14 0.0344" 0.0544-
•30 15 0.0341 0.0344
-32 16 0.0340 0. 0344"
-34 17 0.0339 0.0344-
36 18 0.0339 0. 0344'
•38 19 0.0338 0. 0344"

40 -20 0.0338 0. 0344

:1o
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APPU C

Blocks of input Data for Trajectory Integrations.

Block 0000. Values of xj (slugs) for 0 < j <_ 40.
NM numbers with vsj in the range 0 (0.5) W0.

Block 0001. Values of kj (slugs)-j(ft) for 0< j <40.

NORC numbers with v. in the range 0 (0.6 2
J

First Block with Block Number equal to Run Number.

'Special numbers: xxxx.xxxx xxxx.xxxx

ti- (see) v: (ft)-/ (eec)

Second Block with Block Nimber equal to Run Number.

Special numbers: xxxx.xxxx xxxx*xxxx

r-V (ft)en/(e) t 7i bkb)

The number of intervals determines the length of blok.
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APPENDIX D

Plots of 6n, (ordinates) versus vn (abscissae) for each run

with each point marked by the value of n. (Sting diameter = 1.75

in. The data for the larger sting diameter ran off scale.)
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